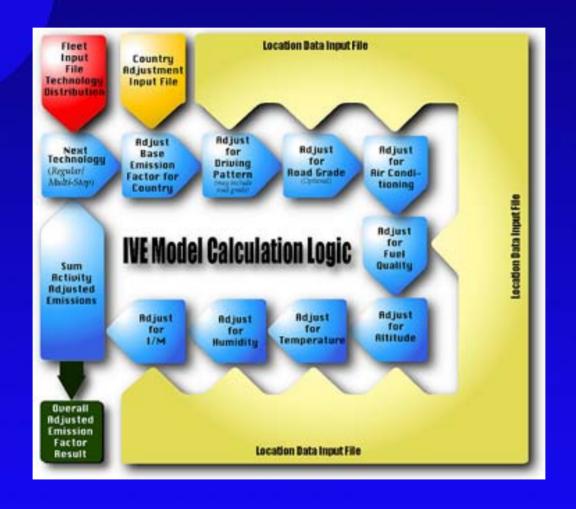
International Vehicle Emissions (IVE) Model

Clean Cities Conference
May 20, 2003
Palm Springs, CA

IVE Modeling Goals

- Define low-cost, easy to use methodologies for developing key motor vehicle related data.
- Provide a sophisticated model that is:
 - Flexible and easy to use. (e.g. Living Model)
 - Adaptable to multiple international locations.
 - Useful for analyzing policy decisions and vehicle growth impacts.
 - Provides a broad range of criteria, toxic, and global warming pollutant data.

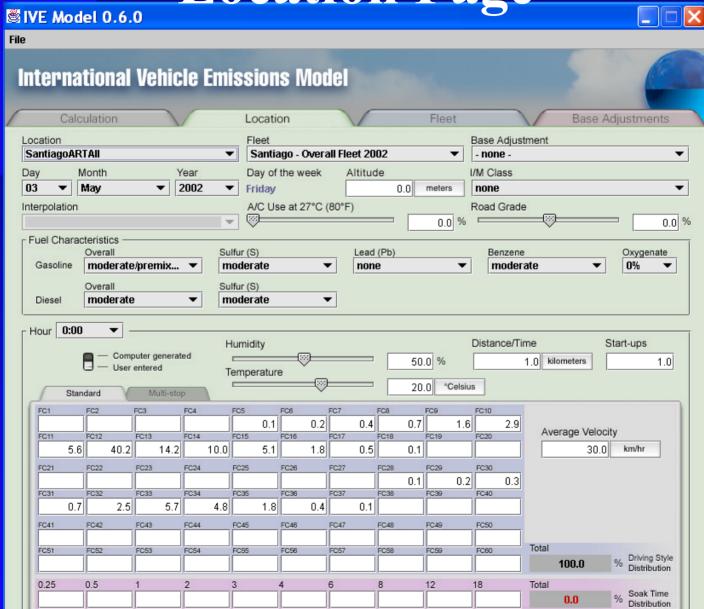

Existing General Vehicle Emission Models

- USEPA, Europe, California
- Existing models designed for specific use in US, Europe, and California
- Inaccurate when applied to most situations outside of their intended use areas.

IVE Model Uses 3 Key Input Files

- Location file describes applicable
 - Altitude, road grade(optional), temperature, humidity
 - Diesel and gasoline fuel quality
 - Driving and start patterns and amounts
- Fleet file describes applicable
 - Distribution of vehicle technologies (2 X 1243)
 - Allows two classes of vehicle fleets (Normal Use and Multi-stop vehicles)
- Country adjustment file describes applicable
 - Adjustments to base emission factors

Model Calculation Process



Location Page

- Specifies data pertaining to the immediate location including
 - General Information such as average altitude, type of I/M program if any, fraction of persons using a/c at 80 deg F, fossil fuel characteristics.
 - Hourly (or daily) data including driving patterns, average speeds, travel distance or time, temperature, humidity, start patterns, number of starts

IVE Model Development

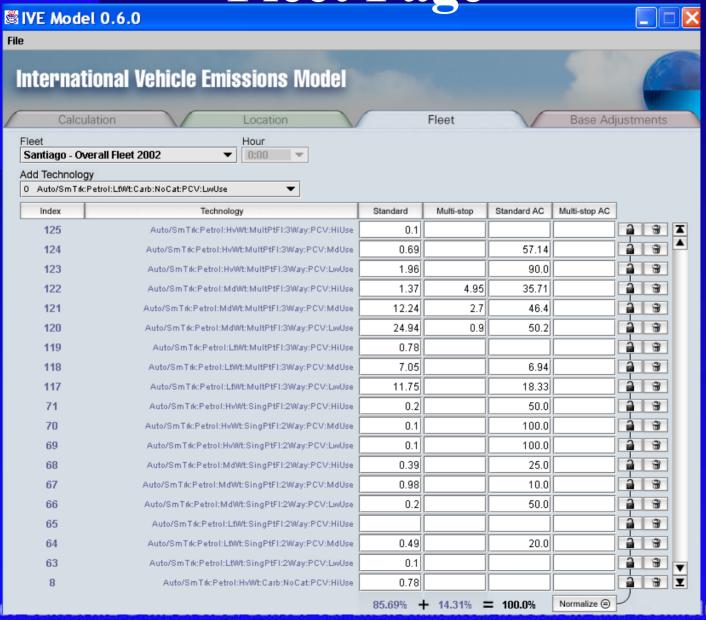
Location Page

Fleet Technologies

- The IVE model allows selection of up to 1243 technologies categorized by vehicle type, size, fuel type, age and emissions control technology
- Several Default files are created for the IVE models from the MOBILE6 data
- Data has been collected in several international areas

Vehicle Technology Classifications

Light Duty Gasoline Vehicles		Light Duty Diesel Vehicles		Light Duty Vehicles (Ethanol, Natural Gas, Propane, retrofits, etc)		Heavy Duty Gasoline Vehicles		Heavy Duty Diesel Vehicles		Heavy Duty Vehicles (Ethanol, Natural Gas, Propane, etc)		Gasoline and Ethanol Motorcycles		
	Carburetor	None	Pre-Chamber Inject.	None	Carburetor / M ixer	None	Carburetor	None	Pre-Chamber Inject.	None	Carburetor	None	2-Cycle, FI	None
	Carburetor	2-Way	Pre-Chamber Inject.	Improved	Carburetor / M ixer	2-Way	Carburetor	2-Way	Direct Injection	Improved	Carburetor	2-Way / EGR	4-Cy cle, Carb	None
	Carburetor	2-Way / EGR	Direct Injection	EGR+	Carburetor / M ixer	2-Way / EGR	Carburetor	2-Way / EGR	Direct Injection	EGR+	Carburetor	3-Way / EGR	4-Cy cle, Carb	Catalyst
	Carburetor	3-Way	FI	PM	Carburetor / M ixer	3-Way	Carburetor	3-Way	FI	PM	FI	3-Way / EGR	4-Cycle, FI	None
	Carburetor	3-Way / EGR	FI	PM/NOx	Carburetor / M ixer	3-Way / EGR	Carburetor	3-Way / EGR	FI	PM/NOx			4-Cycle, FI	Catalyst
S	Single-Pt FI	none	FI	EuroI	Single-Pt FI	2-Way	FI	none	FI	EuroI				
S	Single-Pt FI	none / EGR	FI	EuroII	Single-Pt FI	2-Way / EGR	FI	2-Way	FI	EuroII				
S	Single-Pt FI	2-Way	FI	EuroIII	Single-Pt FI	3-Way	FI	2-Way / EGR	FI	EuroIII				
S	Single-Pt FI	2-Way / EGR	FI	EuroIV	Single-Pt FI	3-Way / EGR	FI	3-Way	FI	EuroIV				
S	Single-Pt FI	3-Way	FI	Hybrid	Multi-Pt FI	3-Way	FI	3-Way / EGR	FI	EuroV				
S	Single-Pt FI	3-Way / EGR			Multi-Pt FI	3-Way / EGR	FI	EuroI	FI	Hybrid				
N	Multi-Pt FI	none			Multi-Pt FI	3-Way / EGR	FI	EuroII						
	Multi-Pt FI	none / EGR				ZEV	FI	EuroIII						
N	Multi-Pt FI	3-Way					FI	EuroIV						
N	Multi-Pt FI	3-Way / EGR					FI	EuroV						
N	Aulti-Pt FI	3-Way / EGR												
	Multi-Pt FI	LEV												
	Multi-Pt FI	ULEV												
	Multi-Pt FI	SULEV												
	Multi-Pt FI	EuroI												
	Multi-Pt FI	EuroII												
	Multi-Pt FI	EuroIII												
	Multi-Pt FI	EuroIV												
N	Multi-Pt FI	Hybrid			F 478									


University of California @ Riverside/Center for Environmental Research and Technology

Each Technology Classification

- Has three size groups associated with it.
- Has three use groups associated with it.
- Thus, there are 9 sub-groups for each technology classification.
- There are also 45 user defined technologies.
- Two technology groups are used. One is for normal vehicles and the second is for multi-stop vehicles.

University

Fleet Page

Load Effects (Road Grade and A/C)

- •Road Grade can either be modeled

 Directly through the use of the driving

 patterns or a constant road grade for the entire link may be applied in the Location File. Valid grade inputs range from –14 to +14%
- •The change in Vehicle Specific Power associated with Road Grade and A/C use is applied to the driving corrections.
- •The fraction of travel in each VSP bin is prorated for each bin.

Example: user inputs road grade of 2% and average velocity of 15m/s => +2.9kW/ton VSP increase. Since each VSP bin range is 4.1kW/tons, the model would move 72% of the fleet up a bin.

University of California @ Riverside/Center for Environmental Research and Technology

International Vehicle Emissions (IVE) Model

TECHNICAL BACKGROUND

Emissions Broken Into Two Categories

Start-up emissions

- Excess emissions beyond normal hot-running emissions that occur while engine is warming up.
- Occur typically in the first 200 seconds of vehicle operation.

Running emissions

- Those emissions that occur during vehicle operations including idle.
- There are both running and start-up emissions during the first 200 seconds of vehicle operation.

How the Base Emission Rates are Developed:

- Most Gasoline and Diesel Vehicles:
 - EPA MOBILE6 and ARB EMFAC model documentation
- Most Small Engine (Motorcycles):
 - Government of India, World Bank Asian Documents, and Thailand
- Alternative Fueled Vehicles:
 - EPA Alternative Fuels Data Center and Department of Energy
 - Compared relative to gasoline counterpart
- New Information Continually Added

Base Emission Rates For CNG/Propane Vehicles

		Natural Gas Retrofit/Flex		Propane Retrofit/Flex
Technology	Natural Gas ANL,	Fuel	Propane	Fuel
Sources	NREL	DOE3, NREL	DOE4, ANL	DOE4, ANL
VOC	0.20	0.30	0.50	0.60
CO	0.70	1.00	0.70	2.00
NOx	0.80	1.00	0.95	2.60
PM	0.05	0.90	0.10	0.90
Lead	0.00	0.00	0.00	0.00
SO2	0.02	0.02	0.02	0.02
NH3	1.00	1.00	1.00	1.00
1,3 butadiene	0.01	0.01	0.01	0.01
Formaldehyde	1.16	1.16	1.16	1.16
Acetaldehyde	0.35	0.35	0.35	0.35
Benzene	0.03	0.03	0.03	0.03
CO2	0.80	0.80	0.86	0.91
N20	1.00	1.00	1.00	1.00
CH4	4.50	8.00	1.00	1.00

How the Correction Factors are Developed:

- Based on U.S. measurements of comparable technologies.
- Limited data to develop correction factors in some cases.
- Correction factor established for each vehicle technology and pollutant.
- Model contains about 500,000 correction factors.

IVE Model Development

How Driving Patterns are Modeled: Considerations

- Variations in driving can have a profound impact on emissions
- It is necessary to develop driving corrections based on easily collected data from a variety of vehicles (this excludes the use of OBD information)
- It is difficult to use a defined set of driving cycles for international applications
- EPA and others currently searching for a more appropriate method
- Affordable, accurate, 1 Hz GPS technology now available

Vehicle Power Demand

VSP (kW/ton) can be calculated for each second of data using the following equation [Jimenez-Palacios, 1999]:

```
VSP = v[1.1a + 9.81 \text{ (atan(sin(grade)))} + 0.132] + 0.000302v^3

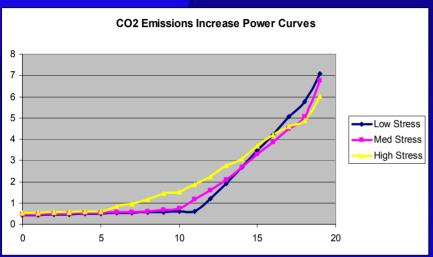
grade = (h_{t=0} - h_{t=-1})/v_{(t=-1to0)}

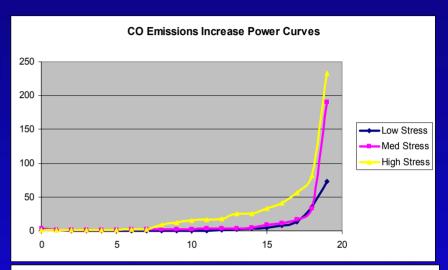
v = \text{velocity (m/s)}

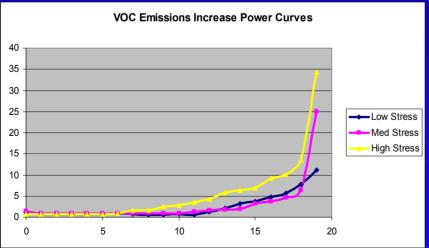
a = \text{acceleration (m/s}^2)

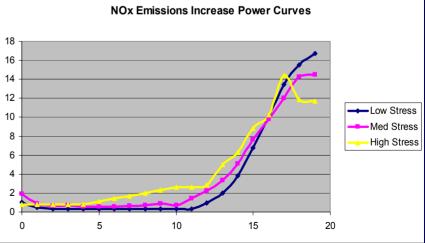
h = \text{Altitude (m)}
```

Engine stress is related to vehicle power load requirements over the past 20 seconds of operation and engine RPM:


Engine Stress (unitless) = RPMIndex + (0.08 ton/kW)*PreaveragePower


```
PreaveragePower = Average(VSP_{t=-5sec\ to\ -25\ sec}) (kW/ton)


RPMIndex = Velocity_{t=0}/SpeedDivider (unitless)


Minimum\ RPMIndex = 0.9
```

Vehicle Emissions & Power Demand

Power Bins for IVE Model

- 60 total bins used for model.
- 3 stress bins and 20 power bins set up to estimate driving impacts on emissions.
- 60 bin process allows alternative binning modifications in future model improvements.

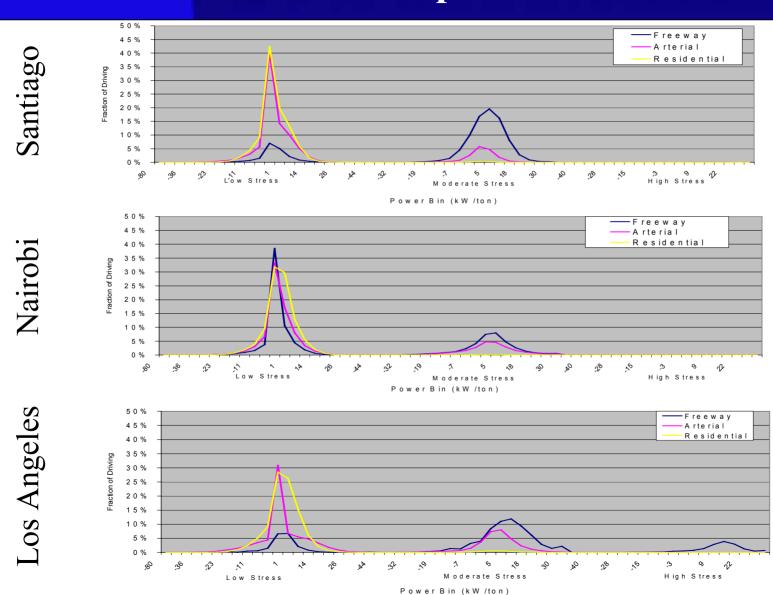
Advantage of Power Binning

- Road grade and air conditioning loads can easily be included in the binning process.
- Power statistics easily drawn from measured vehicle speed patterns.

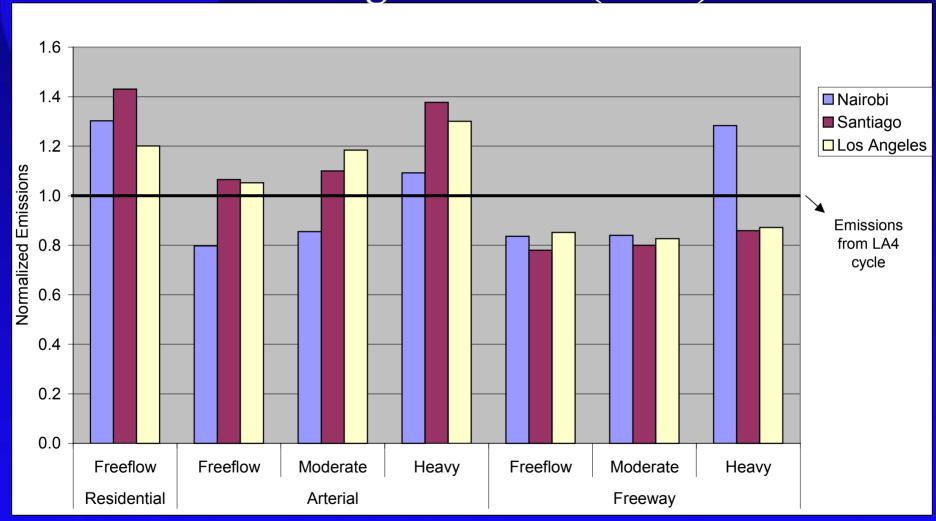
Determining Vehicle Driving Patterns

GPS / Microprocessor Unit

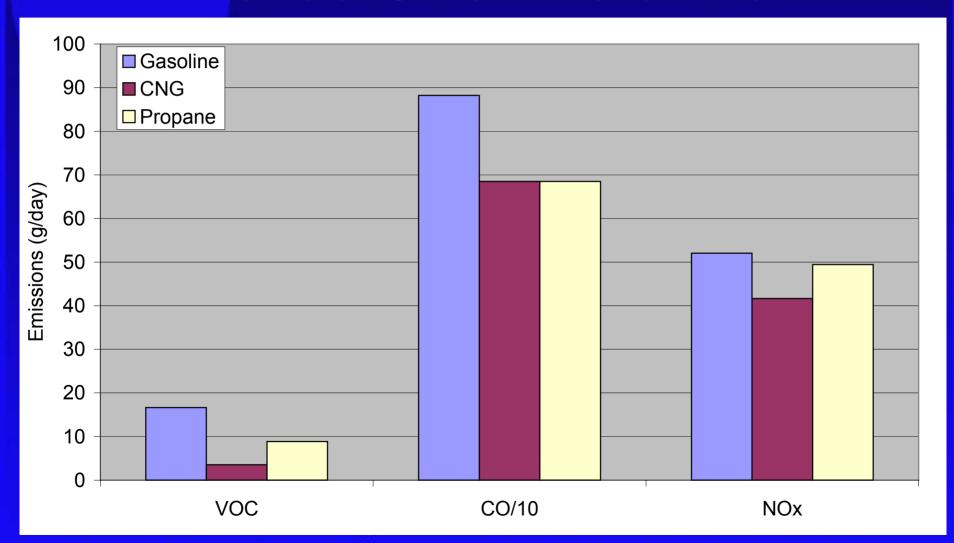
Battery good for 40 hours of testing.


GPS/Microprocessor Module Unit easily carried and used to collect bus driving patterns with lid closed.

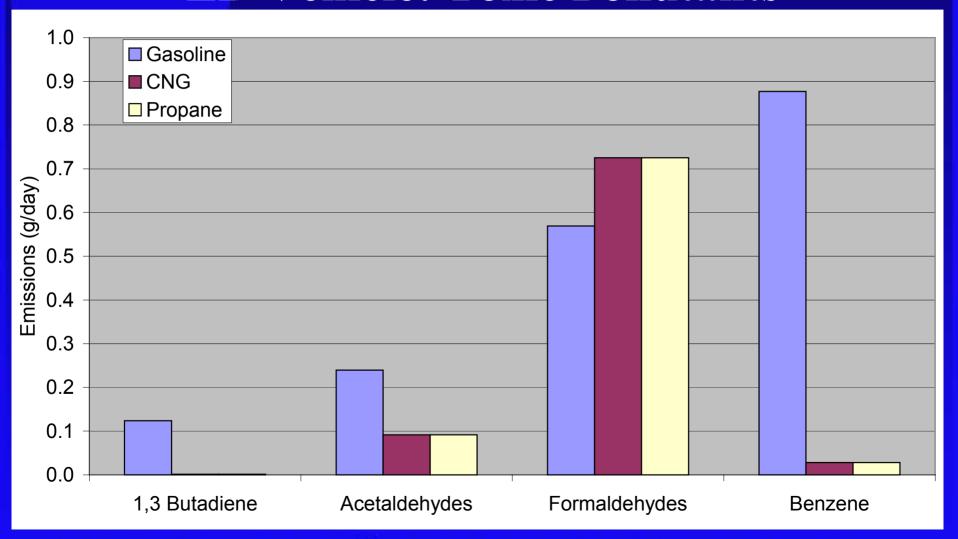
Global Positioning Satellite Units


- Easy to Use
- Provide second by second speed, location, and altitude.
- Units combined with microprocessor and flash memory to store up to one-week of driving data at a time.
- Problems
 - Loose satellites around tall buildings
 - First 3 seconds of acceleration underestimated but then corrects.

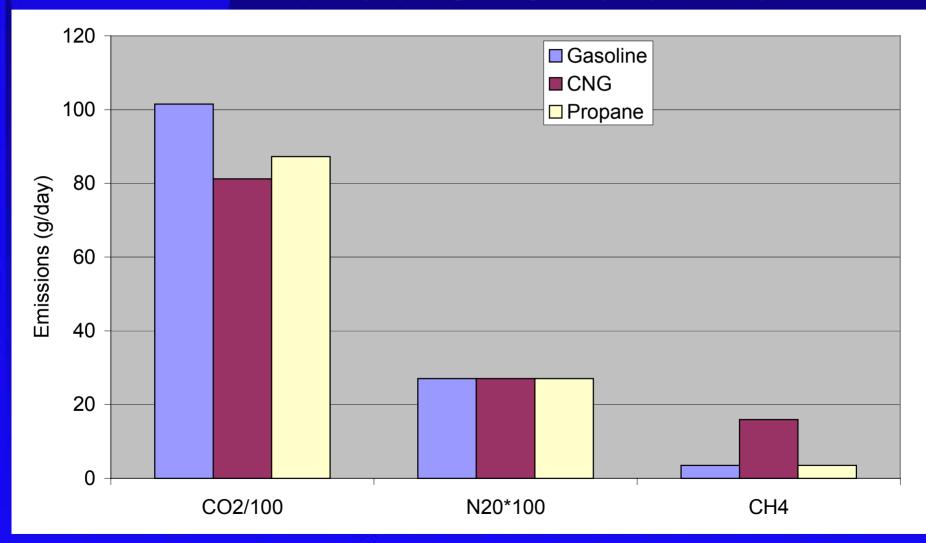
Results: Facility & Location VSP Bin Comparison


IVE Model Development

Variation in Emissions of CO2 with Driving Behavior (LDV)


Estimating Emission Benefits from CNG and Propane Vehicles

Example of Propane, CNG, & Gasoline LD Vehicle: Criteria Pollutants


IVE Model Development

Example of Propane, CNG, & Gasoline LD Vehicle: Toxic Pollutants

IVE Model Development

Example of Propane, CNG, & Gasoline LD Vehicle: GHG Pollutants

